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Object recognition processors have been reported for the applications of auto-
nomic vehicle navigation, smart surveillance and unmanned air vehicles (UAVs)
[1-3]. Most of the processors adopt a single classifier rather than multiple clas-
sifiers even though multi-classifier systems (MCSs) offer more accurate recog-
nition with higher robustness [4]. In addition, MCSs can incorporate the human
vision system (HVS) recognition architecture to reduce computational require-
ments and enhance recognition accuracy. For example, HMAX models the exact
hierarchical architecture of the HVS for improved recognition accuracy [5].
Compared with SIFT, known to have the best recognition accuracy based on
local features extracted from the object [6], HMAX can recognize an object based
on global features by template matching and a maximum-pooling operation
without feature segmentation. In this paper we present a multi-classifier many-
core processor combining the HMAX and SIFT approaches on a single chip.
Through the combined approach, the system can: 1) pay attention to the target
object directly with global context consideration, including complicated back-
ground or camouflaging obstacles, 2) utilize the super-resolution algorithm to
recognize highly blurred or small size objects, and 3) recognize more than 200
objects in real-time by context-aware feature matching.

Figure 9.8.1 shows the multi-classifier object recognition system. In order to
realize object recognition in real-time with low energy consumption, the pro-
posed processor adopts 3 architectural features: 1) a 5-stage fine-grained
pipeline for high throughput in a tile-based SIFT operation, 2) a mixed-mode
intelligent hierarchical perception engine (IHPE) for fast HMAX operation, and 3)
context-aware dynamic resource management (DRM) for real-time operation
with low energy consumption. The HMAX and SIFT blocks shown in Fig. 9.8.1
generate global and local features, respectively, in parallel, and iteratively inter-
act via back-and-forth feedback. Label A in Fig. 9.8.1 represents the global con-
textual top-down attention map, discarding features from unrelated objects.
Label B represents super-resolution feedback produced for tiles with insufficient
features by running a super-resolution algorithm on an “upper scale”, i.e. a larg-
er tile containing more information.  Label C corresponds to the context-aware
feature matching based on global features obtained from HMAX. The previous
models [2-3] utilize SIFT features alone, without the complex segmentation
process for top-down attention.  However, their object recognition achieves less
than ~80% attention accuracy. In the proposed system, the HMAX engine
extracts the global feature descriptors of the scene and provides prior probabil-
ity to the local features for high attention accuracy. The prior probabilities are
used for feature matching; low probability features are discarded as unrelated.
The super resolution is performed on ambiguous regions with insufficient local
features. As a result, the accuracy of attention is increased to 83.6%, while the
previous study achieved only 60.0% accuracy of “object-related” attention.

The proposed MCS many-core processor of Fig. 9.8.2 incorporates 21 IP cores:
a Scale-Space Engine (SSE), 4 Feature Detection (FD) Clusters containing 8 vec-
tor cores and 4 shared-bus Vector Processing Elements (VPE), 4 Description
Generation (DG) clusters, including scalar cores with special ALUs, an Intelligent
Hierarchical Perception Engine (IHPE), a Feature Matching Processor (FMP), a
Dynamic Resource Manager (DRM), and a filter accelerator. The cores are con-
nected to one another by a global hierarchical star NoC [7] and the vector cores
are connected through a local network to share the VPEs in the feature detection
cluster.

Fig. 9.8.3 shows the task-level partitioned architecture for SIFT-based object
recognition. It is composed of: (1) Gaussian Filtering (GF), (2) Difference of
Gaussian (DoG), (3) Local Maximum (LM), (4) Feature Description (FD), and (5)
Feature matching (FM). The first stage, GF, is implemented by a massively par-
allel SSE for simultaneous multi-tile operations. The SSE reduces GF processing
time by 66.8% and 33.7% compared to a single-threaded 20-way SIMD proces-
sor, and a SMT-based SIMD implementation, respectively [3]. Since only 46%
of instructions activate the SIMD datapath in the two stages, the DoG and the LM

cores share the 16b 8-way VPE through an inter-bus scheduler. The shared VPE
is operated in a superscalar manner, providing 2 operation modes: 1) coarse-
grained sharing which allows a core to occupy all the buses, 2) fine-grained
sharing which allows two cores to perform different operations on the same bus.
As a result, the overall processing time for local feature extraction is reduced by
57.2% compared to the SMT-SIMD-based object processor.

The mixed-mode IHPE is shown in Fig. 9.8.4. The digital FSM controller extracts
global features from the scale-space image input, and an analog radial basis
function network (RBFN) classifies the input into the corresponding scene cate-
gory. The 3-tuple, (Ci, Ri, VLT,i), representing the center of the RBF, radius of the
RBF, and logical threshold voltage of Sigmoid function, respectively, are learned
for each scene Si. The Ci and Ri are adjusted by controlling VREF1, VREF2 and the
parallel transistors B as shown in Fig. 9.8.4(c), and VLT,I is adjusted by control-
ling VBP.  For example, the RBFN learning gives (C1, R1, VLT1) of indoor images
(S1) as (0.20, 0.22, 0.60V) and (C2, R2, VLT2) of highway images (S2) as (0.56,
0.54, 0.31V) as Fig. 9.8.4. When a new highway scene is input, the confidence
value of S2’s RBF is higher than the confidence value of S1’s RBF and classifies
the input as S2. As a result, the HMAX recognition can be performed within 16ms
for 25-category scenes. The area and power consumption of the mixed-mode
RBFN are 68.4μm2 and 0.723mW, respectively.  This represents an 87% and
96% reduction, respectively, compared to the equivalent digital implementation.

Fig. 9.8.5 shows the timing chart of the proposed processor performing the MCS
in real-time. Because the HMAX recognition takes 16ms regardless of the scene
content, the SIFT recognition should be performed within about 17.3ms by
adjusting the processing speed of the SSE, FD cluster, and DG clusters. Fig.
9.8.6 shows the DRM operation for continuous video frames. The DRM moni-
tors the number of features, the number of ROI (region of interest) tiles from the
FD clusters, and power-thermal headroom from the external power management
IC. Based on these parameters, the DRM controls the power-mode of two
domains separately (i.e. the FD domain and the DG domain) to reduce the aver-
age power consumption of the processor by 24% compared to when the SIFT is
performed at nominal voltage for a normal scene with medium feature density.
As a result, the proposed processor achieves 646GOPS/W power efficiency and
9.4nJ/pixel energy efficiency, which is competitive with state-of-the-art object
recognition processors.

The proposed processor is implemented with 0.13μm 8-metal CMOS technolo-
gy and occupies 25mm2 with 1.8M equivalent gates and 200kB of on-chip SRAM
(Fig. 9.8.7). The 21 IP cores consume 260mW on average at 200MHz, 1.2V.
Peak performance is 271.4GOPS, while peak power efficiency is 646 GOPS/W,
using DVFS operation at 50MHz, 0.65V. As a result, 96% recognition accuracy
and 9.4 nJ/pixel energy efficiency are achieved on 30fps HD video of highly
blurred and small-size objects in complicated backgrounds with applications in
UAV surveillance.
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Figure 9.8.1: Multi-classifier object recognition system. Figure 9.8.2: Overall architecture of the MCS many-core processor.

Figure 9.8.3: Task-level partitioned hardware for SIFT object recognition.

Figure 9.8.5: Timing chart of multi-classifier execution in the proposed

processor. Figure 9.8.6: Context-aware dynamic resource management.

Figure 9.8.4: Mixed-mode intelligent hierarchical perception engine and

measurement results.
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Figure 9.8.7: Chip micrograph and performance summary


